
On Source Code Transformations for Steganographic Applications

Geoffrey C. Hulette
Computer and Information Science Department

University of Oregon
Eugene, OR, USA

ghulette@cs.uoregon.edu

John Solis
Scalable and Secure Systems Research Department

Sandia National Labs
Livermore, CA, USA
jhsolis@sandia.gov

Abstract—The amount of publicly available source code on
the Internet makes it attractive as a potential message carrier
for steganographic applications. Unfortunately, it is often
overlooked since embedding information in an undetectable
way is challenging. We investigate term rewriting as a method
for embedding messages into programs via transformations on
source code.

We elaborate on several possible transformation strategies
and discuss how they might be applied in a steganographic
setting. We continue with a discussion on (a) the implications
and trade-offs of preserving semantic properties, (b) the rela-
tionship between messages and transformations, and (c) how
to incorporate existing natural language processing techniques.
The goal of this work is to elicit constructive feedback and
present ideas that stimulate future work.

Keywords-steganography; source code transformations; term
rewriting;

I. INTRODUCTION/MOTIVATION

The field of steganography studies techniques for em-
bedding information into inconspicuous carriers such that
outside observers cannot easily detect the presence of this
information. One typical application scenario is the discreet
transfer of secret messages between two parties. For ex-
ample, in a country forbidding anti-government rhetoric,
its citizens could communicate by transmitting sensitive
messages embedded in image files. A second scenario,
document watermarking, is a digital rights management
method for determining if copies of certain media files are
unauthorized. In both scenarios, the same steganographic
techniques can, in principle, be applied to embed watermarks
or secret messages into a variety of types of documents.
For example, information may be embedded into bitmapped
images by manipulating the low-order bits of each pixel.

Source code documents are often overlooked as a po-
tential steganographic carrier. This oversight is partly due
to the challenge of preserving semantic correctness while
simultaneously making the embedded information difficult
to detect. For instance, adding dummy methods never refer-
enced by the original source preserves program semantics,
but will likely be identified as suspicious by an analyst. Why,
therefore, is source code an attractive carrier?

The number of publicly available source code repositories
has exploded with the advent of the Internet and open

source software. The total amount of available source code
is staggering once we consider everything from large repos-
itory websites to individual repositories and instructional
websites with sample source code. PlanetSourceCode.com
alone claims a database containing over 29 million lines of
code [7]. This prevalence makes source code an attractive
information carrier because it is likely to be overlooked or
dismissed by analysts.

In this paper, we investigate novel techniques for embed-
ding messages into program source code using transforma-
tions based on term rewriting. We present three different
approaches, and show how each approach might be applied
in a steganographic setting. We continue with a discussion
on preserving semantic properties, the relationship between
messages and transformations, and how to incorporate ex-
isting natural language processing techniques. Finally, we
conclude with topics for potential future work.

II. TERM REWRITING

Our method encodes a secret message in a log of trans-
formations applied to a given source code text. Crucially,
transformations must be deterministic so that the message
can be reliably recovered. At the same time, transformations
must be flexible enough to encode a variety of messages.
Term rewriting [8] provides a framework and theory for
program transformations that is flexible enough for our
purposes, and can be restricted to ensure determinism.

For our application, terms are a structured representation
of source code in a given programming language, e.g.,
an abstract syntax tree. There are typically many different
ways to encode a given language as terms – deciding this
representation is usually the first step in term rewriting
applications.

Rewriting is a procedure for transforming one term into
another by applying a set of rules. Conceptually, rules
give an identity relationship between terms. Terms are
gradually transformed, step-by-step, by applying rules non-
deterministically at any sub-term where they are valid.

Given a set of rules, we must then provide a strategy to
determine the order and context in which to apply them.
Different systems approach this problem in different ways.
One approach, convenient for steganography, is explicitly



directing rule application through rule expressions. Sys-
tem S [9] is a formal semantics for such expressions, and is
briefly described below.

A. System S

The basic unit of an expression in System S is a primitive
rule. Primitive rules contains two components: the first is
a pattern that is matched against the top-level (outermost)
term, and the second is another pattern that replaces the
input term. Rule application may “fail” if the first pattern
does not “match” the input. If the input does match, then
the rule application succeeds, and the output is the second
pattern of the primitive rule. Primitive rules will typically
allow variables in the pattern, which are bound as a side-
effect of a successful match and can be used in the rule’s
result term.

System S allows the construction of rule expressions using
a set of combinators. For example, the sequence combinator
allows us to apply two rule expressions in sequence, with the
second acting on the output of the first. Similarly, the left-
biased choice combinator will attempt to apply the first rule
expression, and resort to the second just in case the first
fails. Other combinators allow recursion, traversal of sub-
terms, and so on. Crucially, System S permits us to preclude
non-deterministic strategies by eschewing the pure choice
combinator, as described in [9].

To support steganographic applications, we extend Sys-
tem S with tracing semantics to record rule applications.
First, we assert that primitive rules must be labeled. Second,
successful application of a primitive rule is logged (i.e. its
label recorded) sequentially, in the order of application. The
labels of the rules thus form the alphabet for the obfuscated
message, and the trace itself forms the message string. We
omit the formal semantics due to lack of space.

System S treats failure as a special case. A failed program
indicates that no rules were successfully applied and that
the program was not transformed. Failures are represented
by a single distinguished token, in lieu of a transformed
program, and there is no trace output. For the purposes of
steganography, failure could be considered a valid message,
albeit with exactly one form.

III. METHODS

Now we will examine how the extended System S ma-
chinery might be put to steganographic use. We consider
three scenarios. In each of following, let f , g, etc. represent
expressions in System S enhanced with tracing, let x, y, etc.
range over term encodings of programs in a given language,
and let m, n etc. range over trace outputs. We will write
x

f→ (x′,m) to say that the application of rewriting program
f to the term representation of source code x is successfully
rewritten to another term x′ with trace m. We write x

f→ ↓
to indicate that the transformation failed.

foriginal
source
code

altered
source
code

[message]

Figure 1. One-way transform

A. One-way transform

In the first scenario, we construct a transformation f and
a source code term x such that x

f→ (x′,m) where x′ is a
valid transformed program and m is the desired obfuscated
message. We expect that f would be communicated between
sender and recipient through some back channel, and that the
source code x would be available publicly or transmitted
through some low security channel. To recover the message
the recipient simply evaluates the transformation f on x. See
Figure 1 for a graphical illustration.

This approach is conceptually simple, but has the draw-
back that f must be communicated separately.

B. Two-way transform

In the second scenario, we construct a transformation
f and term x as before, such that x

f→ (x′,m) where
x′ is a valid transformed program and m is the desired
message. We add the constraint that there must exist a

transformation f−1 such that x′
f−1

→ (x,m−1), where m−1

is the mirror (reversed) string m. Conceptually, f−1 is the
inverse transformation of f . Under certain conditions and
restrictions (beyond the scope of this paper), given f we
can produce f−1 or vice versa.

The advantage of this approach over the first is that the
original source code need not be distributed. Instead, the
transformed code x′ can be distributed, and the message
recovered by transforming it with f−1 and then reversing the
resulting trace to recover the message (see Figure 2). This
may be desirable in cases where the original source code
represents sensitive information. In this case, our method
may be used to obfuscate the original source code in addition
to the message itself.

C. Recover transformation from differences

In our third and final scenario, the transformation f is
not communicated, but instead is recovered by examining
the differences between two terms x and x′ constructed so
that x

f→ (x′,m) (see Figure 3). Notice that in this case, f
must be unique – that is, if x

f→ (x′,m) and x
g→ (x′, n)

then we require that f = g (and, consequently and crucially,
that m = n).

The advantage of this approach is the removal of a second
channel to communicate f , since it can be recovered from



f

altered
source
code

original
source
code

[egassem]

[message]

f -1

Figure 2. Two-way transform

f

original
source
code

altered
source
code

diff

Figure 3. Recover transform function

source code alone and then used to transform x and recover
m. Of course, in this case, both the original and transformed
versions of the source code are required to recover f . This
approach could be useful in contexts where multiple versions
of the same code document might be expected, e.g., in a
version-controlled source repository.

While this scenario is interesting in theory, it may be
difficult in practice to recover a non-trivial f from x and
x′, as well as to ensure uniqueness of f . This is a topic of
ongoing research.

IV. DISCUSSION

A. Semantic Properties

It may be useful to preserve the semantics of programs
under transformation. This would be desirable, for example,
if we foresaw the source code being inspected for legitimacy
– in this case, preserving or mostly preserving the semantics
of the code could make it appear that the transformation
was applied in the service of software development rather
than steganography. Conversely, a program that has been
transformed in such a way as to render it broken, inefficient,
or nonsensical may invite unwanted scrutiny.

Ensuring preservation of program semantics under trans-
formation is quite difficult, even without ulterior stegano-
graphic motives. We expect that this will be an interesting
area for future work.

B. Constructing Messages

We have not fully addressed the question of how to con-
struct a non-trivial transformation f that induces a particular
message m when given a fixed source code x. Ideally,
since f must be communicated separately, it should be
flexible enough to be reusable on many different source code
documents to produce different messages as needed. That
is, once f is constructed, it should ideally remain fixed or
at least change infrequently. In general, we know that it is
trivial to construct a pair f and x given some desired m, but
constructing an f that is flexible in this sense is non-trivial.

C. Combining with Natural Language Processing

The methods discussed above naturally lend themselves
to being combined with natural language processing (NLP)
techniques. The Semantilog Project [10] is a comprehensive
bibliography of linguistic steganographic techniques, both
theoretical and applied, for a number of languages, including
English, Japanese, Chinese, Persian, and Arabic. In our
context, we treat NLP steganography as a black box capable
of embedding information into the comments and other
documentation found in source code files.

The basic idea is to use existing NLP steganography tools
to create a second information channel in the source text to
augment the term rewriting channel. The two independent
channels can be used to (a) duplicate the embedded message
or (b) split the message using cryptographic secret sharing.

The first approach attempts to improve message recov-
erability. Ideally, the techniques applied to each individual
channel should be robust, i.e., messages are recoverable
despite small changes to the source. However, a second in-
formation channel provides another opportunity for recovery
if the first channel is lost.

In the second situation, cryptographic secret sharing
should make the source code more robust to statistical
analysis looking for variations in entropy. Each channel,
considered independently, does not reveal any information
since the secret share is itself indistinguishable from random.
Messages can only be recovered when both shares are
recovered and successfully combined.

An alternate strategy is to make the source code documen-
tation completely separate from the source code itself. In this
situation, an analyst must correctly identify and associate
the documentation file with its corresponding source code.
Note that this mapping can (and should be) independent
and random, e.g., the documentation for source file X is
mapped to source code Y. This mapping can be identified
using a pseudo-random permutation keyed by a shared secret
key, established a-priori, between the communicating parties.
These shared secrets do not defeat the goals of this paper.
Steganography attempts to hide the fact that information
is embedded in some carrier and recoverable by anyone
who knows the recovery method. This is in contrast to



cryptography where information is obviously encrypted but
impossible to recover.

D. Fundamental Limitations

There are fundamental limits to the amount of protection
that any steganographic application can provide. As shown
by the results in [?], it is impossible to construct an
obfuscator (and by extension a software watermarker) that
makes some information about a program “unintelligible”. A
determined adversary will locate information embedded by
a steganographic application if provided enough samples. In
our scenario, transformed programs could be compiled with
a highly optimizing compiler and then immediately decom-
piled. The difference between the decompiled source code
and original program may reveal that additional information
has been embedded. Our goal, as with any steganographic
scheme, is to make transformed programs appear as incon-
spicuous as possible in hopes of escaping further scrutiny.

V. RELATED WORK

The field of steganography has been well studied with
many techniques developed for embedding information into
specific carriers, including video [1], audio [3], and natural
language text [10]. The sub-field of software watermarking
investigates techniques that discourage illegal duplication by
allowing authorities to prove ownership of some particular
piece of software. This can be accomplished through reg-
ister allocation patterns [13], dynamic path execution [14],
and spread-spectrum techniques for robust watermarks [16].
These approaches do not consider the originating source
code as a possible carrier.

In contrast to watermarking, we are not interested in
detecting illegal duplication. Instead, we would like to
investigate how source code, and more specifically source
code transformations, can be used to embed secret messages
or information.

VI. FUTURE WORK AND CONCLUSION

As a next step, we plan to implement a system that
incorporates the basic capability described in Section III-A.
Such an implementation would allow us to answer some
practical open questions, such as, what is the total amount
of information each transformation is capable of embedding?
A concrete implementation would also help determine the
feasibility of incorporating existing NLP steganographic
approaches as a second information channel. This may turn
out to be impossible if the information capacity of one
channel greatly exceeds that of the other.

The most challenging step will be to develop the theory
to support invertible term rewriting transformations and to
recover unique functions from differences between source
codes. This theory will be a prerequisite for the application
scenarios described in Sections III-B and III-C. It may be
difficult or impossible to guarantee that a transformation is

invertible, or that the inversion is unique. However, the three
approaches we have identified merit further investigation.
We hope that this paper elicits constructive feedback and
stimulates future work in this area.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers of the
Web Intelligence for Information Security Workshop 2011
(WIIS’11) for insightful comments and suggestions.

This work was funded by the Laboratory Directed Re-
search and Development (LDRD) program at Sandia Na-
tional Laboratories. Sandia National Laboratories is a mul-
tiprogram laboratory operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation,
for the United States Department of Energys National
Nuclear Security Administration under contract DE-AC04-
94AL85000.

REFERENCES

[1] H. Noda, T. Furuta, M. Niimi, and E. Kawaguchi, “Applica-
tion of BPCS steganography to wavelet compressed video,”
in ICIP ’04, vol. 4, Oct 2004, pp. 2147–2150.

[2] K. Gopalan, “Audio steganography using bit modification,” in
ICME ’03, vol. 1, July 2003, pp. 629–632.

[3] N. Cvejic and T. Seppanen, “Increasing robustness of LSB
audio steganography using a novel embedding method,” in
ITCC ’04, vol. 2, April 2004, pp. 533–537.

[4] M. J. Atallah, V. Raskin, M. Crogan, C. Hempelmann,
F. Kerschbaum, D. Mohamed, and S. Naik, “Natural language
watermarking: Design, analysis, and a proof-of-concept im-
plementation,” in IHW ’01. Springer-Verlag, 2001, pp. 185–
199.

[5] R. El-Khalil and A. D. Keromytis, “Hydan: Hiding infor-
mation in program binaries,” in Information and Commu-
nications Security, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2004, vol. 3269, pp. 287–291.

[6] “SourceForge.net: Find, create, and publish Open Source
software for free,” http://www.sourceforge.net/.

[7] “PlanetSourceCode.com: The largest public source code
database on the internet,” http://www.planet-source-code.
com/.

[8] F. Baader and T. Nipkow, Term Rewriting and All That.
Cambridge University Press, 1998.

[9] E. Visser and Z. el Abidine Benaissa, “A core language for
rewriting,” Electronic Notes in Theoretical Computer Science,
vol. 15, pp. 422–441, 1998.

[10] R. Bergmair, “A comprehensive bibliography of linguis-
tic steganography,” The Semantilog project: http://www.
semantilog.org/biblingsteg/.

[11] R. Anderson and F. Petitcolas, “On the limits of steganogra-
phy,” Selected Areas in Communications, IEEE Journal on,
vol. 16, no. 4, pp. 474–481, 1998.



[12] C. Cachin, “An information-theoretic model for steganogra-
phy,” in Information Hiding, ser. Lecture Notes in Computer
Science. Springer, 1998, vol. 1525, pp. 306–318.

[13] G. Myles and C. Collberg, “Software watermarking through
register allocation: Implementation, analysis, and attacks,”
in ICISC 2003, ser. Lecture Notes in Computer Science.
Springer, 2004, vol. 2971, pp. 274–293.

[14] C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kece-
cioglu, C. Linn, and M. Stepp, “Dynamic path-based software
watermarking,” SIGPLAN Not., vol. 39, pp. 107–118, 2004.

[15] R. Venkatesan, V. V. Vazirani, and S. Sinha, “A graph
theoretic approach to software watermarking,” in IHW ’01.
Springer-Verlag, 2001, pp. 157–168.

[16] J. P. Stern, G. Hachez, F. Koeune, and J.-J. Quisquater,
“Robust object watermarking: Application to code,” in IH ’99.
Springer-Verlag, 2000, pp. 368–378.


