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Abstract

Digital certificates signed by trusted certification authorities (CAs) are used for multiple
purposes, most commonly for secure binding of public keys to names and other attributes of
their owners. Although a certificate usually includes an expiration time, it is not uncommon
that a certificate needs to be revoked prematurely. For this reason, whenever a client (user
or program) needs to assert the validity of another party’s certificate, it performs revocation
checking. There are many revocation techniques varying in both the operational model and
underlying data structures. One common feature is that a client typically contacts an on-line
third party (trusted, untrusted or semi-trusted), identifies the certificate of interest and obtains
some form of a proof of either revocation or validity (non-revocation) for the certificate in
question.

While useful, revocation checking can leak potentially sensitive information. In particular,
third parties of dubious trustworthiness discover two things: (1) the identity of the party posing
the query, as well as (2) the target of the query. The former can be easily remedied with
techniques such as onion routing or anonymous web browsing. Whereas, hiding the target of
the query is not as obvious. Arguably, a more important loss of privacy results from the
third party’s ability to tie the source of the revocation check with the query’s target. (Since,
most likely, the two are about to communicate.) This paper is concerned with the problem of
privacy in revocation checking and its contribution is two-fold: it identifies and explores the
loss of privacy inherent in current revocation checking, and, it constructs a simple, efficient and
flexible privacy-preserving component for one well-known revocation method.

1 Introduction and Motivation

As is well-known, public key cryptography allows users to communicate privately without having
pre-established shared secrets. While parties can be assured that communication is private, there
is no guarantee of authenticity. Authenticity is obtained by binding a public key to some identity
or name which is later verified via digital signatures in conjunction with public key certificates. A
public key certificate, signed by a recognized certification authority (CA), can be used to verify the
validity, authenticity and ownership of a public key. As long as the issuing CA is trusted, anyone
can verify the CA’s certificate signature and bind the included name/identity to the public key.
Digital certificates work best in large interconnected open systems, where it is generally infeasible
to directly authenticate the owners of all public keys. X.509 [24] is one well-known certificate



format widely used in several Internet-related contexts. The peer-based PGP/GPG |[2, 8] format
represents another popular approach.

Since a certificate is essentially a capability, one of the biggest problems associated with large-
scale use of certificates is revocation. There are many reasons that can lead to a certificate being
revoked prematurely. They include [24]: private key loss or compromise, change of affiliation or job
function, algorithm compromise, or change in security policy. To cope with revocation, it must be
possible to check the status of any certificate at any time.

Revocation techniques can be roughly partitioned into implicit and explicit classes. In the
former, each certificate owner possesses a timely proof of non-revocation which it supplies on
demand to anyone. Lack of such a proof implicitly signifies revocation. An example of implicit
revocation is Micali’s Certificate Revocation System (CRS) [20]. Most revocation methods are
explicit, i.e., they involve generation, maintenance and distribution of various secure data structures
that contain revocation information for a given CA or a given range of certificates.

Well-known explicit revocation methods (data structures) include Certification Revocation Lists
(CRLs) and variations such as A-CRLs, CRL Distribution Points (CRL-DPs), Certificate Revoca-
tion Trees (CRTSs) [15] and Skip-Lists [9]. Another prominent technique is the On-line Certificate
Status Protocol (OCSP) [21] which involves a multitude of “somewhat-trusted” validation agents
(VAs) which respond to client queries with on-demand signed replies indicating current status of a
target certificate.

Regardless of their particulars, all current explicit revocation methods have an unpleasant side-
effect: they divulge too much information. Specifically, a third party (agent, server, responder
or distribution point) of dubious trustworthiness knows: (1) the entity checking revocation status
(source), and (2) the entity whose status is being checked (target). An even more important loss
of privacy results from the third party tying the source of the revocation checking query to that
query’s target. This is significant, because the revocation status check typically serves as a prelude
to actual communication between the two parties.!

In the society preoccupied with gradual erosion of (electronic) privacy, loss of privacy in cur-
rent revocation checking is an important issue worth considering. Consider, for example, certain
countries with less-than-stellar human rights records where mere intent to communicate (indicated
by revocation checking) with a “unsanctioned” web-site may be grounds for arrest or worse. In
the same vein, sharp increase in popularity (deduced from being a frequent target of revocation
checking) of a web-site may lead authorities to conclude that something “subversive” is going on.
The problem can also manifest itself in less sinister settings. Many internet service providers keep
detailed statistics and build elaborate profiles based on their clients’ communication patterns. Cur-
rent revocation checking methods — by divulging both sources and targets or revocation queries —
represent yet another source of personal information that can be exploited by potentially unscrupu-
lous providers.

The primary motivation for this paper is current lack of privacy in certificate revocation check-
ing. The intended contribution of this paper is two-fold: first, it explores the loss of privacy inherent
in current certificate revocation checking, and, second, it constructs a simple, efficient and flexible
privacy-preserving add-on component for one well-known revocation method. We believe that the
simplicity of our approach has a good chance of enabling its eventual adoption by the Internet
masses most of whom at present (unfortunately) ignore revocation checking.

"'We assume that communication between clients and on-line revocation agents (third parties) is private, i.e.,
conducted over secure channels protected by tools such as IPSec [12] or SSL/TLS [10].



1.1 Focus

The first problem mentioned above (hiding the source of a revocation query) can be easily remedied
with modern anonymization techniques, such as onion routing, anonymous web browsing or remail-
ers. While this might protect the source of a revocation query, the target of the query remains
known to the third party. Furthermore, although anonymization techniques are well-known in the
research community, their penetration remains, overall, fairly low. Also, in order to take advantage
of an existing anonymization infrastructure, one either needs to place some trust in unfamiliar
existing entities (e.g., remailers, re-webbers or onion routers) or make the effort to create/configure
some of these entities.

In this paper we focus on the second problem — hiding the targets of revocation queries. We
start by examining current revocation techniques and settle on the one that is most amenable to
supporting efficient privacy-preserving querying.

Note that the privacy problem of the type described above is not unique to revocation checking.
A very similar problem arises in the context of a name service, e.g., the Internet Domain Name
System (DNS) [14]. In DNS, at least one (and potentially many) name servers become privy to both
the source and target of a name-to-address resolution query. For the same reasons as revocation
checking, information culled from DNS queries can be used for sinister, or at least unintended,
purposes. In fact, the privacy problem in DNS is much more rampant and thus more important
than that in revocation checking. This is because revocation checking is still a niche’ activity among
Internet users, in contrast to DNS which is used by nearly all.

1.2 Related Work

There is very little in terms of closely related work. However, this paper is not the first to consider
privacy in revocation checking. The honor belongs to the recent work of Kikuchi [13]. This work
identified the problem and proposed a fairly heavy-weight (inefficient) cryptographic technique spe-
cific to CRLs. The solution relies on so-called cryptographic accumulators which are, unfortunately,
quite expensive.

A related research topic is Private Information Retrieval (PIR) [4, 16]. PIR refers to a set
of cryptographic techniques and protocols that — in a client-server setting — aim to obscure the
actual target(s) of database queries from potentially malicious servers. Although PIR techniques
could be applicable in our context, they tend to be relatively inefficient owing to either (or both)
many communication rounds/messages or expensive cryptographic operations. As will be seen in
subsequent sections, PIR techniques would amount to overkill in the context of privacy-preserving
revocation checking.

2 Certificate Revocation Techniques

In this section, we briefly overview certificate revocation techniques and associated data structures.
In the following, we refer to the entity validating certificates (answering certificate status queries)
as a Validation Authority (VA). A distinct entity — Revocation Authority (RA) — is assumed
responsible for actually revoking certificates, i.e., generating secure data structures such as CRLs.
Unlike a CA, which is always off-line, an RA may be partially on-line to facilitate fast distribution
of revocation information.



CRLs and A-CRLs: These are the most common ways to handle certificate revocation. The
Validation Authority (VA) periodically posts a signed list (or a similar structure) containing
all revoked certificates. Such lists are placed on designated servers, called CRL Distribution
Points. Since a list can get quite long, a VA may post a signed A-CRL which only contains
the list of certificates revoked since the last CRL was issued. In the context of encrypted
email, at the time email is sent, the sender checks if the receiver’s certificate is included in
the latest CRL. To verify a signature on a signed email message, the verifier first checks if (at
present time) the signer’s certificate is included in the latest CRL.

OCSP: The Online Certificate Status Protocol (OCSP) [21] avoids the generation and distribution
of long CRLs and provides more timely revocation information. To validate a certificate in
OCSP, a client sends a certificate status request to a VA. The latter sends back a signed
response indicating the status (revoked, valid, unknown) of the specified certificate.

Certificate Revocation Trees: In 1998, Kocher suggested an improvement for OCSP [15]. Since
the VA is a global service, it must be sufficiently replicated in order to handle the load of all
the validation queries. This means the VA’s signature key must be replicated across many
servers which is either insecure or expensive. (VA servers typically use tamper-resistance to
protect the VA’s signing key). Kocher’s idea is a single highly secure VA which periodically
posts a signed CRL-like data structure to many insecure VA servers. Users then query these
insecure VA servers. The data structure proposed by Kocher is a hash tree? where the leaves
represent currently revoked certificates sorted by serial number (lowest serial number is the
left-most leaf and the highest serial number is the right-most leaf). The root of the hash tree
is signed by the VA. This data structure is called a Certificate Revocation Tree (CRT). When
a client wishes to validate a certificate CERT, she issues a query to the nearest VA server.
Any insecure VA can produce a proof that CERT is (or is not) on the CRT. If n certificates
are revoked, the length of the proof is O(logn). In contrast, the length of the validity proof
in plain OCSP is O(1).

Skip-lists and 2-3 trees: One problem with CRTs is that, each time a certificate is revoked,
the whole tree must be recomputed and distributed in its entirety to all VA servers. A data
structure allowing for dynamic updates would solve the problem since a secure VA would only
need to send small updates to the data structure along with a signature on the new root of
the structure. Both 2-3 trees proposed by Naor and Nissim [22] and skip-lists proposed by
Goodrich, et al. [9] are natural and efficient for this purpose. Additional data structures
were proposed in [1]. When a total of n certificates are already revoked and k new certificates
must be revoked during the current time period, the size of the update message to the VA
servers is O(klogn) (as opposed to O(n) with CRT’s). The proof of certificate’s validity is of
size O(logn), same as with a CRT.

3 Zooming In

Looking at the approaches reviewed above, it seems that retrofitting privacy into CRLs or A-CRLs
is not easy. This observation is supported by the recent attempt by Kikuchi in [13]. As mentioned in
Section 1.2, the cryptographic accumulator approach is inefficient in terms of both bandwidth and

*More, accurately, a Merkle Hash Tree (MHT) [19].



computation. There is, of course, a trivial solution that would entail, for each revocation check,
requesting the entire CRL (or A-CRL). Although effective — the target of the revocation check
remains unknown — this approach is grossly inefficient in terms of bandwidth and client storage.

Similarly, making plain OCSP privacy-preserving is difficult because the type of a revocation /non-
revocation proof it employs is basically an on-demand public key signature by the VA. It does not
rely, at least as far as clients are concerned, on any specific data structure for representing revoked
certificates.

This leaves us with CRTs and related structures, such as 2-3 trees and skip-lists. We start
with CRTs (skip-lists are discussed in the Appendix) since they turn out to be quite amenable to
supporting privacy and inherently guarantee completeness of query replies. (Completeness means
that a lazy or malicious server can not omit leaf nodes in response to a query without causing
verification of the root hash to fail.) Admittedly, our approach is simple (even trivial) and relies
on two basic tools:

e Range Queries: Because the number of revoked certificates typically constitutes only a
small fraction of issued certificates, we suggest, instead of posing revocation queries by a
specific target, to query a range or certificates. The size of the range is determined by the
combination of two basic parameters: (1) the degree of privacy desired by the querier, and
(2) the density /number of revoked certificates. The latter directly influences bandwidth and
client storage overhead.

and

e Permuted Ordering: As designed, CRT involves ordering of revoked certificates by (typ-
ically) certificate serial numbers. Since most CAs assign consecutive serial numbers to con-
secutively issued certificates (which makes perfect sense) groups of related certificates, e.g.,
issued to the same company, would have consecutive serial numbers. Thus, we need to avoid
situations where querying for a range of certificates betrays some information about somehow
related consecutive blocks of serial numbers contained in the range.

In the rest of this paper we describe CRTs in more detail (Section 4), present our modifications to
support privacy (Section 5), describe our prototype implementation (Section 6) and conclude with
examples (Section 7) and future directions (Section 8). Our approach in the context of skip-lists is
presented in the Appendix.

4 CRT Detalils

We now describe the CRT/OCSP scheme in more detail and, in the process, introduce the notation
used in the rest of this paper.

Consider a CRT corresponding to a specific CA and/or a block of certificates. Let lo and hi be
the lowest- and highest-numbered certificates, respectively and n = (hi—lo+1) be the total number
of certificates. A certificate with the serial number i is denoted C;. To simplify the description,
we assume that the total number of revoked certificates 2 < m < n (leaf nodes) is a power of
2. 3 Let Ly, ..., L,, represent the leaf nodes of the CRT. Each leaf contains the serial number of
the corresponding revoked certificate and possibly other information, such as the certificate hash,

3In practice, a CRT does not need to be perfectly balanced.



data/time of, and reason for, revocation. Finally, the notation N(L,) means the serial number of
the certificate referred to by L, for 1 < p < m, and, for all L,, C(L,) = i where lo < i < hi.
Conversely, L(C;) is the leaf index of a revoked certificate, i.e., for each revoked Cj, there exists a
unique p, such that: 1 < p < m and L(C;) = p.

Consider two revoked certificates C; and C}, such that j < k and, for each 7, j < i <k, C; is
not revoked. (In other words, all certificates with serial numbers between j and k are valid.) Then,
it is easy to see that there exists p such that C(L,) = j and C(Lp+1) = k. In most cases (with over
75% probability) any two adjacent leaf nodes are either siblings or cousins.

Another requirement for building a CRT is a cryptographically suitable (efficient, one-way and
second pre-image collision-resistant) hash function H() such as SHA-256 [23]. As in any Merkle
Hash Tree [19], each non-leaf node is recursively computed bottom-up by hashing the concatenation
of its left and right children. Once the root node is computed, its hash, along with additional
information such as issuance and expiration date, is signed by the CA. Finally, the signed CRT is
distributed to all VAs (responders or distribution centers).

For any node in the tree, we use the term co-path to mean a sequence of nodes representing
siblings of all direct ancestors of that node.

To check revocation status, a client sends a request containing the certificate serial number, say
1, to its closest VA. If C; is not revoked, the response consists of:

1. Two adjacent leaf nodes Ly, Ly+1 such that N(L,) < i < N(Lpy1)

2. Three co-paths: one from L, and one from L1, to their LCA, and a third co-path from the
LCA to the root.

3. The signed root node.
If C; is revoked, the response includes:
1. Two adjacent sibling leaf nodes Ly, L1 such that either N(Ly,) =i or N(Lpy1) = i.
2. A co-path to the root starting with the sibling of their parent.
3. The signed root node.

In each case, using the data in the response, the client recomputes the root of the CRT and compares
it to the signed root. It then (in case it has not done so yet for some previous query) verifies the
CA’s signature on the root. This forms a proof of the target certificate’s status.

The CRT/OCSP scheme is computation-efficient since it obviates the need to sign each reply.
Moreover, it removes most of the trust from VAs which are no longer required to maintain on-line
keys, as in plain OCSP. Also, the bandwidth overhead is modest, logarithmic in terms of m — the
number of revoked certificates. However, bandwidth overhead is higher than in plain OCSP which
has constant-sized query replies. Figure 1 illustrates an example CRT with a query to node Ls.
The two adjacent sibling nodes returned are nodes L3 and L4. The co-path returned to the client
is denoted by the light grey node.

5 Range Queries

The basic idea behind range queries is very simple, even trivial. Instead of querying by a specific
certificate serial number i, the client queries a range of serial numbers (j,k) with j < ¢ < k.
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Figure 1: An example CRT query for node Ls.

This allows us to effectively hide the certificate of interest. The only information divulged to the
VA (third party) is that the target certificate lies in the interval [j, k] which translates into the
probability of correctly guessing i: P; = ﬁ Each number in the range is equally likely to be
the serial number of interest and the third party has no means, other than guessing, of determining
the target certificate.

Furthermore, the third party has no way of telling whether the target is a revoked or a non-
revoked certificate. Assuming uniform distribution of revoked certificate serial numbers over the
entire serial number range, 7 is the fraction of revoked certificates. The very same fraction of
certificates would then be revoked in any (j, k) range and hence (k — j+ 1) * * adjacent leaf nodes
would be contained in the query reply.

We stress that using range queries in conjunction with CRT's does not involve any modifications
to the basic CRT data structure.

5.1 Range Size

As with many simple solutions, the challenge lies in the details. Clearly, there is no perfect privacy
attainable with range queries. The highest possible privacy is % which corresponds to querying the
full certificate serial number range, i.e., [j = lo, k = hi], and entails receiving the entire set of CRT
leaf nodes.* The lowest privacy level corresponds to querying — as currently done — by a specific
serial number, i.e., setting j = k = .

The optimal query range is determined by the source of the query, i.e., the client. Several factors
must be taken into account: (1) desired level of privacy, e.g., the probability of guessing equal to
0.001 which, equivalently, the desired level of privacy equal to k — j + 1 = 1000, (2) additional
bandwidth and storage overhead stemming from a set of adjacent leaf nodes in the reply. It is
important to note that additional bandwidth overhead does not depend on the height of the CRT.
This is because, in the plain CRT scheme, any query reply always includes a co-path. The same
holds for our modification. The only “new” overhead is incurred due to the number of adjacent
leaf nodes returned. As described in Section 4, at most two leaf nodes are returned if a certificate-
specific query (j = k = i) is posed. In contrast, a range query of size r entails returning [="]
contiguous leaf nodes.

4This is equivalent to obtaining an entire CRL.



Once the range size (r) is decided, the client proceeds to set the actual range boundaries: j and
k. To do so, it first generates a b-bit random number X where b = log(r) or the bit-length of r.
X determines the position, within the range, of the actual target certificate serial number. This
step is necessary to randomize/vary the placement of the target. Next, the boundaries are set as:
j=1i—X and k = j+r — 1. (Special care must be taken if i < X or i — X < lo. More on this
below.)

Incidentally, we observe that, if a client poses repeated queries against the same target
certificate, varying the query range and boundaries is not advisable. This is because, otherwise,
the adversary can gradually narrow down the set of possible targets by repeatedly computing the
intersection of multiple query ranges. To avoid this situation, our prototype implementation —
described in Section 6 — keeps a cache of previously queried certificates along with corresponding
ranges.

A related privacy-enhancing measure is to reuse previously queried ranges. If a certificate of
interest is contained within a previously queried range, then re-using an old query range that
contains the (new) certificate of interest leaks no additional information.

5.2 Range Size Analysis

The intuition behind our claim that a range query provides privacy is fairly straightforward. It
is impossible for the distribution center, and indeed anyone intercepting traffic, to determine with
any significant advantage the targeted certificate in the returned range. Put another way, we claim
that:

Given a client query range (j, k) and corresponding results from the server, no adversary
can distinguish with probability neglibly over 50% among two certificates a,b € (j,k)
where a is the certificate of interest and b is not.

The only information learned by an adversary about the potential target of the query is the range.
Since we require the range to be randomly determined (as long as the certificate of interest is within
the range) and a client performing repeated queries against the same certificate uses the same
range (j, k), the attacker gains no additional information about the actual certificate of interest.
Each certificate in the range is equally likely to be the certificate of interest with probability ﬁ
However, we concede that, if revocation status of a particular certificate is being queried by many
clients — and each client picks its own random range — the target certificate will be contained within
the intersection of all such queires’ ranges.

5.3 Revocation Density

In order to achieve a tailored trade off between privacy and (mostly bandwidth) overhead, the
client has to be aware of the revocation density, i.e., the ratio of revoked-to-unrevoked certificates,
denoted by 7. We suggest two simple ways of obtaining this value.

The simpler method requires no modifications whatsoever to the CRT data structure. A client
merely poses a dummy revocation query with a randomly generated certificate serial number (no
range query). The purpose is to elicit a reply in the form of the proof containing a CRT co-path.
Verifying the reply securely convinces the client of the CRT’s height. Given the height, the number
of leaf nodes is easily computed, assuming again that the the tree is balanced. The revocation



density immediately follows. (Note that the dummy query is needed only once per CRT, supposing
that the CRT update interval is globally known.)

If dummy queries are undesirable or keeping the CRT balanced is not practical, a minor modi-
fication solves the problem. Recall that the root of the CRT is always signed by the issuing CA or
its trusted off-line agent. One obvious modification is to include the number of leaf nodes (or the
actual ratio) in the computation of the root node’s signature. A client initially obtains the signed
root and obtains the associated tree revocation density as a consequence of successfully verifying
the root signature.

5.4 Query Response

Upon receipt of a range query (j, k), the VA first determines the contiguous sequence of leaf nodes
corresponding to all revoked certificates within the range. It then adds to this sequence two sentinel
leaf nodes: one just beyond k and one immediately preceding j (unless either j or k correspond to
the leftmost of rightmost leaves in the CRT, respectively). This is needed to prove completeness
of the query reply. Completeness in this context refers to expectation that a client will receive all
nodes within the range, i.e., a server can not omit leaf nodes without causing root hash verification
to fail.

All of these leaf nodes have the lowest common ancestor denoted by LCA. The reply must
includes the sequence of leaf nodes and a co-path from the LCA up to the root. In addition, the
reply needs to include two partial co-paths to enable the client to recompute the LCA. This differs
from the plain CRT scheme where a single co-path to the root is sufficient. Of course, the additional
(over plain CRT) overhead is mainly due to returning multiple leaf nodes as part of the verification
object. Aslong as the revocation density — which is used to determine the query range — is uniform,
on the average [r * ()] leaf nodes are returned. Also, of the two co-paths leading up to the LCA,
one represents additional overhead imposed by our method.

The respective bandwidth costs (ignoring constants) of plain CRT and the range query extension
can be compared as follows:

e Plain CRT: log(m) — two leaf nodes and a co-path from their parent (or grandparent) to the
root.

e Range Query: log(m) + log(™™) + [Z2%] — a set of [ contiguous leaf nodes, a co-path

n

from their LCA to the root and two co-paths from sentinel leafs to the LCA.

Figure 2 illustrates an example with two co-paths necessary to compute the root hash. The first
co-path includes all nodes on the left side of the subtree and the second includes all nodes on the
right. These nodes, along with the leaf nodes in the (j, k) range, are used to compute the root of
the CRT. The figure also illustrates how computing the LCA for nodes returned in the (j, k) range
results in shorter co-paths, i.e., by computing the LCA, the co-path can begin from the sibling
node of the LCA instead of the leaf nodes.

5.5 Forcing Uniform Distribution

In a worst-case scenario, all certificates in the desired range are revoked and corresponding r leaf
nodes must be returned to the client. The simplest solution to this is to force all revoked certificate
serial numbers to be uniformly distributed over the entire serial number range. However, this is
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Figure 2: The LCA and co-path nodes for a given (j, k) range.

unrealistic, since, in practice, certificate issuers assign serial numbers to certificates consecutively
over well-defined subranges. ® Each subrange can be used to indicate a different product or class
of products, e.g., VeriSign supports the following classes: Standard, Commerce and Premium [5].
Requiring uniform non-sequential certificate distribution would create a maintenance nightmare for
both issuers and certificate-holders. Furthermore, gathering and analysis of statistical data would
become problematic.

We propose a simple extension to the range query technique that addresses the problem while
guaranteeing uniformity among the CRT leaf nodes. Instead of sorting according to serial numbers,
we sort leaf nodes along permuted serial numbers. One obvious choice of suitable permutation that
ensures uniformity is a block cipher, e.g., DES, with a known and fixed key. Note that the brute-
force resistance of the block cipher is not important here. The only issue of concern is the block
cipher’s quality — for a fixed key — as a pseudo-random permutation (PRP). Ideally, the space of
all possible serial numbers would match the set of all possible block cipher outputs. For example,
DES-ECB mode outputs 64-bit blocks which matches the size of certificate serial numbers for many
X.509v3 CAs. However, the underlying permutation can be resolved with any good block cipher,
such as Blowfish or AES. We further observe that a cryptographic hash function is not a good
choice for the kind of a PRP we require. Unlike a PRP, a hash function “reduces” its input and
collisions are expected, however difficult they might be to compute. Whereas, a PRP resolved with
a block cipher such as DES-ECB with a fixed key, guarantees no collisions.

The primary advantage of this extension is that certificate issuers can continue issuing sequentially-
numbered certificates over well-defined subranges. As long as an appropriate PRP is used, we can
assure uniform distribution of the CRT leaf nodes. An unfortunate drawback of this technique is
that revoking a whole block of consecutive certificate serial numbers becomes inefficient. This is
because permuted serial numbers are scattered throughout the total range of serial numbers, which
complicates the corresponding CRT.

®This is true even in light of certain new attacks [18]. Such attacks allow an adversary to construct a pair of valid
X.509 certificates when the template for the certificate is known or easily guessed, i.e., with high probability two
sequential certificates will have near identical header templates.
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6 Prototype Implementation

The range query approach described above has been implemented as a stand-alone proof-of-concept
prototype available for both Linux and Win32 platforms. The tools and the source code are available
for download at http://sconce.ics.uci.edu/ppr. The toy prototype consists of the client and
server components and utilizes the popular OpenSSL crypto library [10]. There is also a separate
CA component which issues certificates and CRTs.

The prototype components are configured with the following parameters:

e Pseudo-Random Permutation Function: PRP(-)
e CA Public/Private Key-Pair: (PK,SK)
e The CRT Root Hash and its RSA signature

In this implementation, the permutation function can be one of the following block ciphers sup-
ported by OpenSSL: Blowfish, DES, RC4.

The server component takes as input the path to an ASCII configuration file, or loads from a
default file if one is not supplied. Currently, there is no interactive way of configuring the server.
The configuration file allows for selecting a (PRP) block cipher (or none, if so desired), the keys
to be used, as well as the information about each revoked certificate in the CRT. The information
required for each revoked certificate includes: certificate certificate number, reason for revocation,
and path to a (file) copy of the revoked certificate. The certificates are assumed to be in the
X.509v3 format, generated by the OpenSSL CA tool, in the default .pem output. A more complete
description of the configuration file is included in the default.conf file distributed with the tool.

Once all settings are loaded from the configuration file, the server generates the corresponding
CRT based on the permuted (via PRP(-)) serial numbers and waits for clients to initiate a con-
nection. When a client initially connects, the server responds with the global parameters for the
system and waits for an actual query. When a query is received, the server returns all appropriate
leaf nodes in the range requested by the client as well as the interior nodes corresponding to the
co-paths, as described in Section 5.4 above.

The client component takes as input the server’s IP address, the desired privacy level p = %
(where r is the query range size) and the serial number (C;) of the target certificate. It then
computes PRP(K, C;), and performs two queries on the server. The first query refers to a specific
but random certificate. As described in Section 5.3, this is needed to establish revocation density.
The client verifies the first reply, and, using, the length of the returned co-path in the reply,
computes the number of leaf nodes. Then, it generates the random range boundaries necessary for
the desired privacy level. The formulation of the second query, its processing by the server and
reply verification by the client follow the protocol as described above.

The current prototype is a mere proof-of-concept of little practical use. Work is currently under-
way to construct a privacy-preserving CRT plug-in for the Mozilla Thunderbird and Eudora e-mail
clients. These plug-ins will have the functionality roughly equivalent to the stand-alone prototype
and will allow user-transparent certificate status checking for the intended email destination (in
case of sending) and for the email source (as part of processing received email).
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7 Real World Scenarios

Public Key Infrastructures (PKIs) are already well-established in commercial, educational and
government venues. For example, VeriSign, one of the leading certificate issuers has more than
450,000 public key certificates in many different countries throughout the world [6]. The majority
of e-commerce sites utilize VeriSign certificates. Additionally, the United States Army has instituted
a program that issues public keys (contained on a personal smartcard) to all military personnel,
selected reservists, civilian employees, and on-site contractors in the Department of the Army
[17]. This initiative is quite remarkable because of its huge scale. The Department of the Army
is expecting to issue a total of around 1.4 million smartcards. Researchers have already started
pointing out potential problems with the planned implementation of the PKI infrastructure [11, 3].

Both VeriSign and the Department of the Army use CRLs as the primary means of distributing
information about invalid certificates. VeriSign hosts a public website with all CRLs [7]. Each
CRLs issued includes the certificate serial numbers along with a hash of the certificate. The CRLs
combined together represent over 115,000 revoked certificates and take up 3.6 MBytes of space.
The situation is worse for the Department of the Army. In a study by the National Institute of
Standards and Technology (NIST), Berkovits, et al. [3] predict certificate revocation frequency as
high as 10%. This is based on the relatively fast re-issue rate (every three years) and the high
fluidity of the user base. Supporting CRLs with upwards of 140,000 certificates translates into a
bandwidth nightmare requiring each of the 1.4 million smart card owners to periodically download
the CRLs.

With such high bandwidth requirements for traditional CRLs, alternate solutions providing
low bandwidth costs need to be explored. Our approach offers client-selectable bandwidth/privacy
trade-off.

8 Future Directions

The proposed range query approach takes advantage of the CRT structure to offer low bandwidth
overhead and obtain client-specified level of privacy. The CRT structure has the additional benefit of
providing efficient (in terms of computation) cryptographic proofs for target certificates. However,
our approach represents only the initial simple step in this line of research and much more remains
to be done.

One outstanding issue is the analysis of privacy loss in the presence of repeated queries. If
we assume that multiple clients, at about the same time, are all interested in a particular target
certificate (e.g., because of a breaking news article) and the adversary (third party or VA) is aware
of the potential target, co-relating multiple range queries does not seem difficult since all the range
queries in question would have at least one certificate in common. A similar situation occurs if a
single client, over time, repeatedly queries the status of the same target certificate — in this case,
narrowing the overlap of all queries’ ranges gradually erodes privacy and might eventually yield a
single target certificate.

Finally, the usability factor remains largely unexplored. Many wonderful security- and privacy-
enhancing techniques have been proposed and lauded by the research community only to quietly
fade into obscurity due to usability issues. As mentioned earlier in the paper, revocation checking
is unfortunately all but ignored by the majority of Internet users. For this reason, finding simple
and unobtrusive ways of making average users aware of both the need for revocation checking and
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the need to protect their privacy (as part of revocation checking) is a major challenge.

9 Conclusions

The work described in this paper represents a very simple yet novel approach for addressing pri-
vacy concerns in revocation checking. Each client, depending on the desired level of privacy, can
determine a query range that best suits its needs. This results in a fundamental trade-off between
privacy and bandwidth overhead. In the worst case, the overhead can be significant if the desired
privacy level is high and as is the number of revoked certificates. However, if only a small fraction
of all certificates are revoked, our approach results is reasonably efficient. Furthermore, experience
from real-world environments (based on revocation statistics from government, commercial, and
military sources) suggests that the proposed solution would work well since revoked certificates
represent a tiny fraction of the total numbers of issued certificates.
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Appendix A: Range Queries in Skip-Lists

The ranged query technique can also be applied to other revocation structures mentioned in Section 2. We
now discuss providing privacy in the context of skip-lists which were proposed for revocation purposes by
Goodrich, et al. [9] The authenticated dictionary approach based on skip-lists and commutative hashing
[9] can be used as a certificate revocation structure. The resultining data structure is a traditional skip-list
amended with commutative hashing. A hash function is said to be commutative if h(x,y) = h(y,z) for all
x and y. A candidate construction for such a hash function is:

h(z,y) = f(min{z,y}, maz{z,y})

Here, h() is a hash function that takes two integer arguments, 2 and y of equal bit-size and maps them to a
k-bit integer h(x,y). Additionally, sequences of integers (z1,xa, ..., ;) can be hashed together by using the
resultant hash as the input for the next iteration of the hash function: h(z1, h(za,...h(zp—2, H(Tn-1,hn))-*))

This notion of commutative hashing allows for the creation of authenticated dictionary based on skip-
lists. Each node in the skip-list contains the hash of its neighbor to the right causing a hash chain up to
the root. The root node represents the combined hash of all nodes in the skip-list. Further details of the
hashing process (for both tower and plateau nodes) can be found in [9].

When used as certificate revocation structure, a skip-list with commutative hashing can also provide a
short proof. When a query for a target node is posed, the nodes along the search path are returned to the
client who, by repeated commutative hashing, can verify the hash of the root. If the hash value matches the
signed root then the client can be assured that the query response is correct and unaltered.

14



Figure 3 shows the query path for value 75 in the skip-list. The colored nodes represent the search path
taken to locate the node. These colored nodes become the hash values returned to the user to verify the
root the hash. We can now easily extend this data structure to preserve privacy. The technique is similiar
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Figure 3: Query for 75 on a skip-list with commutative hashing. Colored nodes represent search
path and arrows represent direction of hash flow to root.

to the original CRT solution. Instead of querying for a single node, we query for a single node and for a
range of nodes to return. The result from the server is the search path for the smallest node in the query
and all nodes in the query range.

Since each node contains the hash value of the node immediately to its right, the client takes each
returned node and computes the hash for the smallest node. If the computed value correctly matches the
value returned by the server the client can be assured that no nodes have been omitted from the search
results, and that the results are complete.

The second step of the verification process involves using the search path to the smallest node and the
smallest node itself to compute the hash value of the root node. If the computed value matches the signed
root hash value then the client can be assured that all nodes returned are revoked and that none have been
omitted. An example of this process can be seen in Figure 4. In this example, a client makes a query on
node 10 with a range of 60, making the complete search range from 10 to 70. Node 75 must be included in
the results to prove to the client that no nodes have been omitted from the search results.

The light grey nodes represent the search path to node 10, while the dark grey nodes represent all nodes
in the range returned to the client. A client can then verify the validity of the results using the process
described above. In this example, nodes are hashed from 75 down to 10 and then verified that this value is
the hash value returned by the server. If this verifies then the root hash is computed by using the search
path (light grey) nodes.
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Figure 4: Range query (10,60) using skip-lists and commutative hashing.
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