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Abstract—Physical Unclonable Functions (PUFs) or
Physical One Way Functions (P-OWFs) are physical
systems whose responses to input stimuli are easy to
measure but hard to clone. The unclonability property
is due to the accepted hardness of replicating the mul-
titude of uncontrollable manufacturing characteristics
and makes PUFs useful in solving problems such as
device authentication, software protection and licensing,
and certified execution. In this paper, we investigate the
effectiveness of PUFs for software protection in hostile
offline settings.

We show that traditional non-computational (black-
box) PUFs cannot solve the software protection problem
in this context. We provide two real-world adversary
models (weak and strong variants) and security def-
initions for each. We propose schemes secure against
the weak adversary and show that no scheme is secure
against a strong adversary without the use of trusted
hardware. Finally, we present a protection scheme secure
against strong adversaries based on trusted hardware.

Keywords-physical unclonable functions, PUFs, phys-
ical one-way functions, software protection, intellectual
property protection

I. INTRODUCTION

Physical Unclonable Functions (PUFs) or Physical
One Way Functions (P-OWFs) are physical systems
whose responses to input stimuli are easy to measure,
within reasonable error bounds, but hard to clone.
In essence, PUFs hide their secrets in circuit char-
acteristics rather than in digitized form. On different
input stimuli (challenges) a PUF circuit exposes certain
measurable and persistent characteristics (responses).
The unclonability property comes from the accepted
hardness of replicating the multitude of uncontrol-
lable manufacturing characteristics. Several varieties of
PUFs have been proposed since being introduced by

Pappu in [1] and range from optical PUFs [1], [2] to
silicon timing PUFs [3], [4].

Although initially envisaged as a new device iden-
tification and authentication tool, the attractiveness of
PUF unclonability has greatly broadened the scope of
possible applications. Current and emerging applica-
tions include software protection and licensing [5]–[7],
hardware tamper proofing [8], [9], and certified execu-
tion [10], [11]. However, the problem with the largest
commercial impact is software protection. Software
piracy costs the software industry billions of dollars
annually in lost revenue.

Protecting software in offline scenarios is extremely
challenging because of malicious hosts. Malicious
hosts have complete control, access, and visibility, over
all software they execute. This makes for an extremely
powerful adversary and explains why most approaches
fail to protect software from illegal tampering and
duplication. The main security issue with using PUFs
in this hostile context is dealing with PUF replay
and virtualization attacks [6] – also referred to as
OORE (Observe Once, Run Everywhere) attacks. Only
well designed schemes based on trusted devices (e.g.,
trusted hardware or servers) can have any success.
This raises interesting research questions: Is it possible
to use PUF technologies to build secure software
protection schemes? What would such schemes look
like?

A. Contributions

In this paper, we seek to answer the above questions
by investigating the effectiveness of PUFs for software
protection from a theoretical standpoint. While the for-
malization may seem verbose, it allows us to study the
fundamental behavior of PUFs and to draw conclusions
independent of specific implementations. Furthermore,



the framework we present, as we argue later, is not far
from reality.

Our main contribution is showing that traditional
(black-box) PUFs cannot solve the software protection
problem in offline settings. Traditional PUFs are de-
fined as devices that do not perform any computation,
but behave solely as black box functions, i.e., given a
challenge as input, output an unpredictable but consis-
tently repeatable response.

We also contribute two real-world adversary models
(weak and strong variants) and present definitions
for security against each adversary. We continue by
proposing schemes secure against the weak adversary
and show that no scheme is secure against a strong
adversary without the use of trusted hardware. Finally,
we propose a protection scheme secure against strong
adversaries based on trusted hardware.

B. Related Work

The first work geared towards the anti-piracy and
software protection problem was in 1980 by Kent [12].
Kent suggested the use of tamper resistant trusted
hardware and encrypted programs and was the first to
differentiate the trusted host problem from the trusted
code problem. Gosler [13] proposed the use of dongles
and magnetic signatures in floppy drives along with
several anti-debugging techniques to prevent software
analysis and copying. Unfortunately, these early works
are vulnerable to OORE attacks.

Cohen [14] proposed a solution using software di-
versity and code obfuscation as a software protection
mechanism. Cohen’s methods were based on simple
code transformation and obfuscation techniques. Ad-
ditional techniques were later proposed by Collberg
et al [15] and Wang [16]. Finally, Goldreich and
Ostrovsky provided the first theoretical analysis and
foundation to the software protection problem [17].
The basic approach hides/obfuscates data access pat-
terns in conjunction with trusted hardware to prevent
illegal software replication.

More recently, Boaz Barak et al [18] completed a
theoretical analysis of software obfuscation techniques.
Their contribution was an interesting negative result
that implied, in its most extreme interpretation, that
there does not exist a provably secure obfuscation
algorithm that works on all possible programs. Taking
a new approach, Chang and Atallah [19] proposed
a scheme that prevented software tampering using a

set of inter-connected (code) guards programmed to
perform code verification and repairs.

The advent of PUFs has led to several proposals for
their use in software protection. Most notably, Gua-
jardo et al. [5], proposed an FPGA based intellectual
property protection scheme that relied on SRAM PUFs.
However, SRAM PUFs are not ideal due to the possi-
bility of an exhaustive read out attack. Atallah et al. [6]
proposed inter-twining software functionality directly
with the PUF. However, their approach requires trusted
hardware for remote initialization and only protects
software with algebraic group functionality.

C. Organization

The remainder of this paper is organized as follows:
Section II explains the software protection problem
and reviews the concepts needed to understand this
paper: PUFs, Turing Machines (TMs), and Control
Flow Graphs (CFGs). In Section III we introduce a
weak adversary (W-ADV) model along with a software
protection scheme secure against this adversary. Sec-
tion IV extends the previous model to capture a strong
adversary (S-ADV) and argues why trusted hardware
is required to protect against such adversaries. We then
present a software protection scheme based on trusted
hardware secure against a S-ADV. Section V, presents
future directions for research and motivates the need
to rethink current approaches to software protection.
Finally, we summarize our conclusions in Section VI.

II. THE SOFTWARE PROTECTION PROBLEM

To properly tackle the software protection problem,
it is important to accurately define the problem and any
solution requirements. We re-iterate that rather than
protecting software from trademark or copyright vio-
lations (i.e., software fingerprinting and watermarking)
we aim to protect software from illegal execution and
duplication.

In our model, the adversary’s goal is to create
a duplicate program with identical functionality. At
first glance this seems unrealistic – in most practical
situations it is sufficient for a duplicated program to
have similar or partial behavior. It is common to see
pirated software that only supports a subset of features
or that only occasionally crashes.

However, if we can devise a generic method capable
of protecting small code block sizes, then this method



can be extended to larger programs with several pro-
tected “features”. In the ideal situation, it should be
difficult for an adversary to identify a specific feature
and remove it without affecting other features, i.e.,
duplication of all but one feature is also difficult.

We now review theoretical preliminaries and answer
the questions: (1) What powers do real-world adver-
saries have? (2) How do we protect software against
real-world adversaries without using trusted hardware
or online trusted third parties?

A. Preliminaries

Formal PUF Definition: Although the formal defini-
tion of a PUF has been under debate recently [20]–[23],
we define a PUF as follows:

Definition 1. A Physical Unclonable Function is a
physical system with the following properties:
• (Persistent and Unpredictable) The response (Ri)

to some challenge (Ci) is random, yet persistent
over multiple observations.

• (Unclonable) Given a PUF (PUF ′), it is infea-
sible for an adversary to build another system
(PUF ′′) – real or virtual – that provides the same
responses to every possible challenge.

• (Tamper Evident) Invasive attacks on the PUF es-
sentially destroy them and render them ineffective.

It is important to note that a randomness property is
not explicitly required since the notion of unclonability
supersedes the notion of randomness – i.e., for a
hardware device to be unclonable, it must possess
randomness. We acknowledge that the above definition
does not capture the notion of noise in PUF responses
(as in [23]). The effect of noise on persistence can be
captured by introducing a threshold parameter (α) and
require that the response to some challenge occurs with
a probability of at least α (after error correction). In
this paper, we do not address noisy PUF responses,
but assume interaction with a PUF with a threshold
parameter α = 1.

Programs as Turing Machines: A Turing Machine
(TM) consists of a finite control, at least one infinite
tape divided into cells, and a read and/or write head
on each of the tapes. The finite control may be in
one of many (but finite) number of states (Q). Each
cell on the tape may contain one symbol from the
alphabet of the machine (Σ), or a blank symbol (B).
The tape head is capable of moving either left (L) or

right (R) from each cell. The TM begins in an initial
state – q0 and halts at a halting state – qh. The state
transition function (δ) determines how the machine
changes state. The set of all inputs to the machine M
that cause it to reach qh is called its language L(M). In
our study of programs, we do not distinguish between
(1) recursive and recursively enumerable languages
or (2) deterministic and non-deterministic TMs. In
general, a TM is assumed to be as powerful as a real
machine and can execute any program that a computing
device can. This allows us to safely assume that there
exists a TM for every computer program P.

Equivalence of Turing Machines: We say that two
TMs M and M′ are equivalent (denoted M ≡ M′) if
∀x,M(x) = M′(x) – i.e., the functions computed by the
two machines are identical on every input x. These two
machines may have a different set of states and may
also work with different state transition relations.

Unfortunately, it is not always possible to confirm
complete equivalence since the language of a machine
|L(M)| may be infinite. For this reason, we cannot
require strict equivalence and assume that the input
set size is finite and covers all features of the program.

Throughout this paper we use the terms program
and machine (and notations M and P) interchangeably.

Control Flow Graphs: A control flow graph (CFG)
is a directed graph that denotes all execution paths
traversed by a program during execution. The exact
paths taken are usually dependent on user input and/or
branching conditions. Each node in the graph repre-
sents a linear block of code and each edge denotes the
flow of control from one block to the next. Control
flow graphs have two standard nodes: an entry node
and an exit node. The entry node typically includes
all instructions required for setting up the program
execution environment, global declarations, etc. The
exit block is where all execution halts – analogous to
a TM halting state. When this block is reached we say
that the program is complete.

Note that the control flow graph of a program is
an alternative visualization of the TM state transition
diagram it represents.

III. FORMALIZING THE WEAK ADVERSARY

(W-ADV)

This model captures the scenario in which an ad-
versary does not have access to the legitimate PUF.
A real-world analogue is an adversary who makes an



Table I
SUMMARY OF NOTATION IN SECTION III

Notation Definition
IPP Intellectual Property Protection scheme

A (or) ADV A polynomially (time) bounded adver-
sary

n Security parameter determining the
number of PUF challenges inserted in
a program

p(·) A positive polynomial function
WADVA,IPP(n) The output of the WADV game with A,

IPP, n as inputs.
E[TWADVA,IPP(n) = 1] Expected number of trials of the

WADV game before WADVA,IPP(n) =
1.

N Number of blocks in a program
bi Integer label of block i

f (R(C)) Function f applied to R(C)
CFG(P) The control flow graph representing

program P

exact duplicate of software to install and execute on
its local systems.

A. PUF IP-Protection in the presence of a W-ADV

Consider the following experiment, defined for any
PUF Intellectual Property-Protection (IPP) scheme,
any adversary A, and any security parameter n (which
determines the number of PUF challenges inserted in
the output of IPP):

The W-ADV Experiment (WADVA,IPP(n)):
1) The IPP oracle picks at random two strings

(that represent the Turing machines M and PUF)
and produces the string M′ embedded with n
PUF challenges which is of length p(|M|), for
some polynomial p(·). We denote an embedded
challenge C as C ∈M′.

2) The adversary A is given as input n and the string
of the machine M′.

3) The adversary A outputs a string M′′.
4) The experiment output is defined to be 1 if:

∀x ∈ L(M), [M′′(x) = M′(x)] and
[@C ∈M′′ s.t R(C) is unknown]

Otherwise the output is 0. We say that A suc-
ceeded if WADVA,IPP(n) = 1.

The adversary wins the experiment if M′′ has the
same functionality as M′ and M′′ has no PUF chal-
lenges in it whose responses (or function of responses)

have not been guessed by the adversary. Note that
this definition allows for M′′ to contain zero PUF
challenges, i.e., have been removed by the adversary.

It may seem odd to model “unclonable” PUFs
as random strings that are inherently clonable.
However, we justify this decision by arguing that a
deterministic challenge/response PUF can be viewed
as an exponentially large lookup table. An adversary
with a polynomial amount of storage space cannot
duplicate the PUF string in its entirety. i.e., it is
impossible for an adversary to perform a read-out
attack and virtualize the entire domain space of the
PUF.

Let E[TWADVA,IPP(n) = 1] be the expected number of
trials required by adversary A before winning the game,
where a trial is a single execution of M′ for some x of
the adversary’s choosing.

Definition 2. A PUF IP-Protection scheme IPP is said
to be ε-secure in the presence of a W-ADV (or, W-
ADV ε-Secure) if for all probabilistic polynomial time
adversaries A there exists an ε exponential in the size
of the program, such that:

E[TWADVA,IPP(n) = 1]≥ ε (1)

where n is the number of PUF challenges inserted in
M′ and the probability is taken over the random coins
used by A, as well as the random coins used in the
experiment (for choosing PUF challenges).

B. Formal Requirements of a W-ADV Secure IPP
Scheme

Based on the definitions in Section III-A, we now
formally enumerate the requirements of a W-ADV
secure IPP scheme:

(protected functionality) The protected program P′

must have the same functionality as the original pro-
gram P. This requirement can be formalized as follows:

If P is represented by the Turing machine M and P′

is represented by the Turing machine M′ then:

∀x ∈ L(M),M(x) = M′(x) (2)

Further, the program P′ must be protected such that
correct execution only occurs on a system with the
attached PUF , i.e., for every embedded challenge C ∈



P′, the response R′(C) must be the expected response
for that challenge. This requirement is essentially an
if and only if pre-cursor to the above functionality
requirement:

∀x ∈ L(M),∀C ∈M′,M(x) = M′(x)

iff R(C) = R′(C)
(3)

(non-trivial inversion) There does not exist a polyno-
mial time algorithm ADV such that, ADV(M’) → M. It
should be hard for an adversary to create a functionally
equivalent piece of software that does not perform all
original PUF queries. This can be formalized as:

∀ADV,Pr[ADV (M′) = M′′ s.t M′′ ≡M

and |C ∈M′′|< n]≤ 1
p(|M|)

(4)

C. W-ADV Secure IPP Scheme Based on Control Flow
Graphs

Let P and PUF be the inputs to the IPP scheme,
where P is the program to be protected and PUF the
PUF oracle required for correct execution. Let G be
the control flow graph of program P where each node
represents a block of code. The size of each code
block is dependent on the security parameter n in the
following way: Let N ≥ d |P|n e and assign each code
block an integer label: {b1, ...,bN}.

Construction 1. The following construction causes the
N node control flow graph G to be identified only when
the PUF responses to challenges are correct. Given
an incorrect PUF, the control flow graph resembles a
complete graph with N nodes.

1) At the exit point of every block bi, a challenge is
inserted by the vendor as follows:

a) If the original control flow graph G of the
program P contains an edge from node
bi to b j, then pick challenge Ci such that
f (R(Ci)) equals the integer label of b j.

b) The challenge is inserted as an uncon-
ditional branching statement, e.g., goto
f (R(Ci)), or as part of an existing condi-
tional branching statement, e.g.,
if (a == b) then goto f (R(Ci)).

2) The above procedure is repeated for every edge
in the original control flow graph G.

Properties and Security: The resulting program P′

has the following properties:

(non-trivial inversion: complete CFG in the
presence of a W-ADV) The CFG of P′ appears to be
a complete graph because at the exit point of a given
block the adversary is unaware of the correct f (R(Ci))
value and cannot do significantly better than guessing.
Thus, each of the remaining N− 1 blocks is equally
valid as the next node in the CFG. This creates edges
between all possible blocks and forces the adversary
to guess the next block – a correct guess occurs with
probability 1

N−1 for each block.

(protected functionality: correct CFG in the
presence of PUF) In the presence of the PUF oracle,
the program P′ and its control flow graph G′ have the
same functionality and structure as the program P and
its graph G, respectively. This is because the correct
response f (R(Ci)) is given for every challenge Ci in
block bi with probability equal to 1.

An example of the difference in the control flow
graph of P′ with and without the correct PUF oracle
is illustrated in Figure 1.

Figure 1. Example CFG(P′) on PUF → CFG(P′) on PUF ′

Theorem 1. Construction 1 is W-ADV Secure.

Proof: To show that Construction 1 is W-ADV



secure according to Definition 2, we must show that
the expected number of trials before an adversary may
win the W-ADV experiment is at least exponential
in N. We know that the probability of an adversary
correctly guessing the next block to enter from block
bi is 1

N−1 (if we assume no loops, allowing loops only
makes our case stronger). The probability of correctly
guessing a single path of length m is 1

(N−1)m . However,
since the number of paths (and path lengths) in P′ are
unknown to the adversary, an exhaustive search over all
N blocks is required to discover all possible paths. The
probability of N consecutive correct guesses for the
values of f (R(Ci)) is 1

(n−1)n . Therefore, the expected
number of trials before the adversary is able to guess
all f (R(Ci)) correctly is (N−1)N .

Limitations: While our scheme is theoretically se-
cure, it does suffer from what we call a reality shock.
In the real world, it is likely that a program will crash
if control is randomly transferred from one block to
another. If this behavior occurs with high probability
(≈ 1), an adversary can reconstruct the correct control
flow in O(N2) trials. However, methods exist to prevent
crashing on unexpected control flow, such as, global
variable declarations, choosing very fine grained block
granularity, etc.

Furthermore, the deterministic PUF responses in the
above construction make it possible to create a P′

given access to the real PUF oracle using the attack
described in Section IV-B. In the following section, we
show how to convert the above scheme into one that is
secure against a strong adversary using cryptographic
primitives and a trusted computing board. We also
illustrate reasons for why we believe it is impossible
to achieve security against a strong adversary without
a trusted computing board.

IV. FORMALIZING THE STRONG ADVERSARY

(S-ADV)

This model captures the scenario in which an ad-
versary has limited time access to the legitimate PUF
oracle. In the real world, this would be an adversary
that buys a single software license, studies the software
and PUF interactions, and attempts to create a cracked
version to distribute to multiple systems.

Table II
SUMMARY OF NOTATION IN SECTION IV

Notation Definition
p(·), p′(·) Positive polynomial functions

SADVA,IPP(n) The output of the SADV game with A,
IPP, n as inputs.

E[TSADVA,IPP(n) = 1] Expected number of trials of the SADV
game before SADVA,IPP(n) = 1.

PT My A probabilistic Turing machine with
random tape set to string y.

PT My(x) A PT M with input x and the random
tape set to y.

L(PT My) The language of PT My.
Fk(·) A strong pseudo-random permutation

with key k.
F j

k (x) Fk(·) applied j times on input x.

A. PUF IP-Protection in the presence of a S-ADV

The basic idea behind a S-ADV is that the adversary
is allowed to adaptively query the PUF oracle used by
the IPP algorithm. This is formalized by allowing A
to interact freely with the PUF oracle as a black-box
that returns responses (or functions of responses) to
challenges issued by A. The following experiment is
defined for any PUF IP-Protection scheme IPP, any
adversary A, and any security parameter n (number of
PUF challenges inserted in the output of IPP).

The S-ADV Experiment (SADVA,IPP(n)):
1) The IPP oracle picks at random two strings

(that represent the Turing machines M and PUF)
and produces the string M′ embedded with n
PUF challenges which is of length p(|M|), for
some polynomial p(·). We denote an embedded
challenge C as C ∈M′.

2) The adversary A is given as input n, access to
O f (PUF), and the string of the machine M′.

3) The adversary A continues to have oracle access
to the machine PUF . It then outputs a string M′′.
Let C′ be the set of all queries sent to the PUF
oracle O f (PUF).

4) The experiment output is defined to be 1 if:
∀x ∈ L(M), [M′′(x) = M′(x)] and
[@C ∈M′′ s.t. f (R(C)) is unknown]

Otherwise, the output is 0. We say that A suc-
ceeded if SADVA,IPP(n) = 1.

The adversary wins the experiment if M′′ has the
same functionality as M′ and if M′′ has no PUF



challenges in it whose responses (or function of
responses) have not been guessed or learned from the
PUF oracle. Note that this allows for M′′ to contain
zero PUF challenges, i.e., have been removed by the
adversary.

Let E[TSADVA,IPP(n) = 1] be the expected number of
trials required by adversary A before winning the the
game (i.e., before SADVA,IPP(n) = 1).

Definition 3. A PUF IP-Protection scheme IPP is said
to be ε-secure in the presence of a S-ADV (or, S-
ADV ε-Secure) if for all probabilistic polynomial time
adversaries A there exists an ε exponential in the size
of the program, such that:

E[TSADVA,IPP(n) = 1]≥ ε (5)

where n is the number of PUF challenges inserted in
M′ and the probability is taken over the random coins
used by A, as well as the random coins used in the
experiment (for choosing PUF challenges).

Clearly, if an IPP scheme is secure against a S-ADV,
it is also secure against a W-ADV. This holds because
the WADV experiment is a special case of the SADV
experiment in which the adversary A does not access
the PUF oracle at all.

B. Discussion

At first sight, it appears that security against a S-
ADV is impossible to achieve. In particular, consider
an adversary that gets as input a program P′. Since
the adversary has oracle access to O f (PUF), it can
request responses (or a function of the responses) for
all challenges in P′. This makes it possible to create
P′′ by simply replaying the recorded responses. Such
an attack easily breaks the protection provided by IPP,
since Equation 5 is now:

E[TSADVA,IPP(n) = 1] = 1 (6)

We conclude that no IPP scheme can be secure
against an S-ADV if the PUF challenges in P′ are
deterministic. Avoiding this issue requires: (1) PUF re-
sponses that are not dependent solely on the challenge,
or (2) non-deterministic PUF challenges. However, the
first method violates our assumption that a PUF is a
non-computational (black-box) device.

C. Strong Adversarial Approaches

In general, an S-ADV A may take one of the
following two approaches in order to create a cracked
version P′′ of a protected program P′.

1) A may execute the program for a given input
on the legitimate PUF and observe the log of
executed blocks. He can then removes all in-
stances of the PUF challenges. This essentially
creates the cracked version P′′ for the single
execution path that was reached with the supplied
input. Here, the difficulty of creating the crack is
expressed in terms of the number of paths present
in the state transition diagram of the machine P′.

2) A may instead scan the program P′ and store
every challenge embedded in it. The responses to
each of these challenges are then stored in a table
of (C,R) pairs – thereby, virtualizing the use f ul
part of the PUF. Here, the difficulty of creating
the crack is expressed in terms of the probability
of the adversary guessing correctly all responses
to challenges presented by the software.

Based on the above two approaches, the lower bound
on the number of iterations required by the adversary
to create a cracked version of the software is the
minimum between the number paths in P and the num-
ber of iterations required for guessing or learning all
correct PUF responses. We point out that the number
of paths in the control flow graph of the protected
program P′ (or, in the state transition diagram for
M′) is controlled by the software developer. Various
programming techniques, such as, obfuscation, can
increase CFG branching factor but are beyond the
scope of our paper. Instead, we focus on maximizing
the number of iterations required before an adversary
correctly guesses all responses to the challenges in P′.

D. An Impossibility Conjecture

We now argue why it is impossible to build a S-ADV
secure IPP scheme without using trusted hardware for
secure storage and/or processing. We first present an
informal argument to show intuitively why we believe
this to be true. Our arguments are also applicable
to software obfuscation, whitebox cryptography, and
software watermarking.

Conjecture 1. There cannot exist a S-ADV secure IPP
scheme in offline settings without trusted hardware.



Reasoning. It is clear from the above requirements
that there needs to be some type of randomness in-
volved in the selection of challenges. We now set up
our program P′ as a probabilistic Turing machine PT M
which behaves like an ordinary deterministic Turing
machine except that (1) multiple state transitions may
exist for entries in the state transition function, and (2)
transitions are made based on probabilities determined
by a random tape R which consists of a binary string
of random bits.

We say that x ∈ L(PT My) if PT My(x) halts and
accepts. Here, y represents the bits on the random tape.
For our machine PT M, the input tape is write enabled
and consists of bits that determine the computation path
and responses to challenges issued by the transition
function. The transition function, at each challenge
stage, may select one of a large finite number of
challenges based on the string of bits y in the random
tape R. At the verify response stage, the transition
function may make a state transition based on the
response received to the issued challenge. Any input x
that requests a valid computation and contains correct
responses to all challenges issued by the transition
function will result in a halt and accept state.

A fundamental requirement for all probabilistic Tur-
ing machines is that the random tape R be read-only
(i.e., it is not write enabled). However, it is impossible
to enforce this requirement in the purely offline setting
without trusted hardware – every tape is write-enabled.
Since the random tape is write enabled, an adversary
may rewrite the tape with the bits y to enforce a certain
set of challenges on every iteration of PT M. The end
result is a deterministic Turing machine T M(x) rather
than the desired probabilistic machine PT My(x). This
enables the adversary to launch the attack described in
Section IV-B and win the S-ADV experiment after just
a single trial.

E. A S-ADV Secure Scheme Using Trusted Hardware

Let P and PUF be the inputs to the IPP scheme,
where P is the program to be protected and PUF is
the PUF required for correct execution. Let G be the
control flow graph of the program P where each node
represents a block of code. As before, code block size
is bounded by the security parameter n in the following
way: Let N ≥d |P|n e with each block assigned an integer
label: {b1, ...,bN} ∈ {1, ...,N}. We assume the trusted
hardware can store O(N logN) bits in secure memory

(for the entire lifetime of the program) and can perform
strong pseudo-random permutation operations (s-PRP).

Strong Pseudo Random Permutations: A function
F :{0,1}l×{0,1}l →{0,1}l is a keyed s-PRP if:

• For every k, Fk(·) is a one-to-one function.
• Given k,x there exist efficient functions for com-

puting Fk(x) and its inverse F−1
k (x).

• An adversary with access to the inverse function
oracle cannot distinguish between Fk(·) and a
randomly chosen permutation.

We build our IPP scheme based on the assumption
that strong pseudo random permutations exist –
a conjecture widely believed to be true. In our
construction, the key k for the s-PRP Fk(·) is stored
in secure memory.

IPP-Program State: The IPP-Program State is ini-
tialized to {b1, ...,bN}. After the jth execution, the state
is updated to {F( j)

k (b1), ...,F
( j)
k (bN)} where Fk is a

keyed s-PRP function. We say that the value F( j)
k (bi)

is the label assigned to the block bi in the jth iteration.
IPP-PRP Tables: In the secure memory provided by

the trusted hardware, a 3-tuple-N-record table (called
the IPP-PRP Table) is stored. There is a record for
every block in P containing the following fields:

• Block Index: The index of a block i is the initial
label bi assigned to it. This tuple is the primary
key to the PRP-IPP table and does not change
during the entire lifetime of the program P′.

• PRP Index: The PRP index of a block i is the
label assigned to it by the IPP-Program state
described above. The value is unique for each
block, however it changes on each iteration in
accordance with the IPP-Program state.

• Challenge Set: The challenge set for a block i
is a large but finite set of challenges that have
the following property: for every challenge in the
challenge set, f (R(C)) = F( j)

k (bi). Notice that the
input and output domains of the function Fk(·) are
the same, therefore, only n challenge sets need to
be collected by the vendor of P′. The set, as with
the PRP index also changes with every update of
the IPP-Program state.



Construction 2. Our construction causes the N node
control flow graph G to be identified only when the
PUF responses to challenges are correct. Given an
incorrect PUF, the control flow graph resembles an
N node complete graph. Note that this construction
illustrates only one instance of the program. The blocks
of the program are relabeled on each iteration (or
instance), as required by the software vendor. The same
construction applies after relabeling.

1) At the exit point of every block with block index
– bi, challenges are inserted by the vendor as
follows:

a) If the control flow graph G of the program
P contains an edge from a block with
index bi to a block with index b j, then a
challenge C is selected at random from the
challenge set in the record that contains b j
as the block index. Providing the expected
response to this challenge transfers control
to the correct block in the re-labeled control
flow graph.

b) The challenge is inserted as: (1) an un-
conditional branching statement, e.g., goto
f (R(C)), or (2) part of an existing condi-
tional branching statement, e.g.,
if (a == b) then goto f (R(C)) else goto
f (R(C′)).

2) The above procedure is repeated for every edge
in the control flow graph G.

Original CFG

b(1)(1)

b(2)(2)

b(4)(4) b(5)(5)

b(3)(3)

b(6)(6)

Relabeled CFG

b(1)(4)

b(2)(5)

b(4)(2) b(5)(6)

b(3)(3)

b(6)(1)

Figure 2. (example) Initial CFG on iteration 0→ Relabeled CFG
on iteration 1. The value in the first parenthesis is the block index,
the second is the PRP index. The exit point of each block contains
a challenge C such that f (R(C)) == PRP index(b j).

Properties and Security

(non-trivial inversion: complete CFG in the
presence of a S-ADV) The control flow graph of the
program P′ appears as a complete graph because: On
a new instance of the program (due to relabeling of
nodes in the control flow graph), at the exit point
of a given block, the adversary is unaware of the
correct (re-labeled) value of f (R(Ci)) and cannot do
significantly better than guessing its value. Correctly
guessing the next block occurs with probability 1

N−1 .

(protected functionality: correct CFG in the pres-
ence of PUF) In the presence of PUF , the program
P′ and its control flow graph G′ have the same func-
tionality and structure as the program P and its graph
G, respectively. This is because the correct response
f (R(Ci)) is given for every challenge Ci in block bi
with probability equal to 1.

Theorem 2. Construction 2 is S-ADV Secure

Proof: To show that Construction 2 is S-ADV
secure, according to Definition 3, we must show that
the expected number of trials before an adversary may
win the S-ADV experiment is at least exponential in
N. If FK(·) is a strong pseudo random permutation, on
a new program instance, we know that the probability
of an adversary correctly guessing the label of the next
block to enter from block bi is 1

N−1 (if we assume no
loops, allowing loops only makes our case stronger).
There are N blocks, therefore the probability of N
consecutive correct guesses for the values of f (R(Ci))
is 1

(N−1)N . Therefore, the expected number of trials
before the adversary is able to guess all f (R(Ci))s
correctly is (N−1)N .

Discussion: Challenge Set Size vs. Security The
size of each challenge set directly corresponds to the
number of iterations an adversary must run (on a
particular path of the control flow graph) before being
able to use the protected software on a virtualized PUF.

Therefore, the challenge set size must be large
enough to prevent brute-force attacks by the adversary.
This can also be enforced by ensuring that licenses are
tied to specific number of uses rather than unlimited
use. After each use (i.e., instantiation) of the program,
the challenge entry of the challenge set is deleted.
Eventually, the number of entries for some challenge
set will reach null, causing the program to terminate
abruptly. At this point, the user will be required to



request more challenge sets from the software vendor.
The size of the challenge set and per-usage licenses
are an important security parameter/policy left in the
hands of software vendors.

V. RETHINKING THE SOFTWARE PROTECTION

PROBLEM

Section IV-D argues why it is impossible to achieve
security against a S-ADV without a trusted entity (e.g.,
trusted hardware or online server). Unfortunately, this
does not meet our original goal of finding a feasible
offline solution without additional trusted hardware.
This requires that we re-analyze the software protection
problem and explain why traditional (i.e., black-box)
PUFs and traditional models of computing (i.e., Turing
machines and RAM) fail to provide a solution to the
software protection problem.

A. Failure of Traditional PUFs

The main reason for the failure of traditional PUFs
is the impossibility of supplying random challenges
to the PUF from a deterministic program. Further,
the PUF is only a peripheral device connected to
the device executing the program via some bus, and
in the hostile environment (modeled by the S-ADV),
any information flow through the bus is known and
monitored by the adversary. This allows an adversary
to easily replicate/virtualize the PUF and makes them
unusable against the S-ADV.

This leads us to recognize the need for a PUF which
is intrinsically involved in the actual computation
performed by the program, e.g., a processor that
exhibits certain timing characteristics. We call such
PUFs intrinsic and personal. Intrinsic because they
are inherently involved in the execution of the
software and personal because every computing
device possesses such a PUF.

Intrinsic Personal PUFs (IP-PUFs) are PUFs that
are intrinsically and continuously involved in the
computation of the program to be protected.

B. Failure of Traditional Computing Models

Unfortunately, traditional Turing machines or RAM
computing models are not useful with the software
protection problem because intrinsic features and ran-
domness (such as timing delays and bit errors) cannot

be sufficiently modeled. Any future attempts to find
a purely PUF based solution to the offline protection
problem should rely on a systems oriented toolkit.

VI. CONCLUSIONS AND FUTURE WORK

PUFs have been envisioned as being applicable to
practical problems, such as, hardware authentication,
certified execution, and most notably software protec-
tion. However, current approaches attempting to use
PUFs for offline hardware authentication and software
protection are vulnerable to virtualization attacks

We believe that using IP-PUFs can reduce such
attacks significantly by continuously authenticating
the device implicitly and transparently. Further, this
method of authentication is useful for software protec-
tion by intertwining software and a computing device
(e.g., by inserting race conditions that resolve correctly
only on the correct device). This approach makes
it increasingly difficult for an adversary to unhook
software functionality from the PUF. The development
of such a PUF is the logical culmination for this project
and will be part of our future work.

In conclusion, we first showed that traditional non-
computational (black-box) PUFs are not useful in solv-
ing the software protection problem in offline scenar-
ios. We provided two real-world adversary models and
proposed schemes secure both (using trusted hardware
in the strong case). Our results show that incorporating
PUFs as a method for software protection will require
systems based approaches and methodologies.
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